Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.520
Filtrar
1.
Med Phys ; 50(12): 8057-8062, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37655886

RESUMO

PURPOSE: Transmission-target x-ray tubes generate more x-rays than reflection thick-target x-ray tubes. A transmission x-ray tube combined with radiosensitizers has a better radiation enhancement effect. This study investigated the feasibility of using a transmission x-ray tube with radiosensitizers in clinical radiotherapy and its effect on radiation dose enhancement. METHODS: This study used MCNP6.2 to simulate the model of a transmission x-ray tube and Co-60 beam.   The radiation enhancement effect of radiosensitizers was examined with iodine-127 (I-127), radioiodinated iododeoxyuridine (IUdR), and gold nanoparticles (GNPs). RESULTS: The study results showed that the dose enhancement factor (DEF) of the transmission x-ray tube with GNPs was 10.27, which was higher than that of I-127 (6.46) and IUdR (3.08). The DEF of the Co-60 beam with GNPs, I-127, and IUdR was 1.23, 1.19, and 1.2, respectively. The Auger electron flux of the transmission x-ray tube with GNPs was 1.19E+05 particles/cm2 . CONCLUSIONS: This study found that a transmission x-ray tube with appropriate radiosensitizers could produce a high rate of Auger electrons to fulfill the radiation enhancement effect, and this procedure has the potential to become a radiotherapy modality.


Assuntos
Nanopartículas Metálicas , Radiossensibilizantes , Idoxuridina , Raios X , Método de Monte Carlo , Ouro , Nanopartículas Metálicas/uso terapêutico
2.
Chemistry ; 29(30): e202300017, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-36880483

RESUMO

The development of a universal approach for precisely tuning the electrochemical characteristics of conducting carbon nanotubes for tracking harmful agents in the human body with high selectivity and sensitivity remains a challenge. Herein, we describe a simplistic, versatile, and general approach to the construction of functionalized electrochemical material. The design of electrochemical material consists of (i) modification of multiwalled carbon nanotubes (MWCNT) with dipodal naphthyl-based dipodal urea (KR-1) through non-covalent functionalization (KR-1@MWCNT) which enhances the dispersibility of MWCNT and hence conductivity, (ii) complexation of KR-1@MWCNT with Hg2+ accelerate the electron transfer in the material which amplify the detection response of functionalized material (i. e., Hg/KR-1@MWCNT) towards various thymidine analogues. Further, the application of functionalized electrochemical material (Hg/KR-1@MWCNT) achieves real-time electrochemical monitoring of harmful antiviral drug 5-iodo-2'-iododeoxyuridine (IUdR) levels in human serum for the first time.


Assuntos
Nanotubos de Carbono , Humanos , Nanotubos de Carbono/química , Antivirais , Técnicas Eletroquímicas , Idoxuridina
3.
Curr Protoc ; 2(7): e502, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35895086

RESUMO

Modification of nucleosides via cross-coupling processes has been carried out extensively on unprotected halonucleosides to produce functionalized nucleosides that are often developed for incorporation into oligonucleotides or used as fluorescent probes. This approach requires protection of the 5'-OH with the 4,4'-dimethoxytrityl (DMTr) group, which is complicated and a common cause of reaction failure. Here we report a method for direct functionalization of 5'-O-DMTr-5-iodo-2'-deoxyuridine via Suzuki-Miyaura cross-coupling, Heck alkenylation, and carboamidation. This approach facilitates rapid synthesis of a variety of C5-substituted 5'-O-DMTr-2'-deoxyuridine derivatives. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Synthesis of the SerrKap palladacycle complex Basic Protocol 2: Suzuki-Miyaura coupling of 5'-O-DMTr-5-iodo-2'-deoxyuridine using SerrKap palladacycle Basic Protocol 3: Heck coupling of 5'-O-DMTr-5-iodo-2'-deoxyuridine using SerrKap palladacycle Basic Protocol 4: Heck coupling of 5'-O-DMTr-5-iodo-2'-deoxyuridine with Ruth linker using Pd(OAc)2 /PTABS Basic Protocol 5: Carbonylative amidation of 5'-O-DMTr-5-iodo-2'-deoxyuridine using Pd(OAc)2 /PTABS.


Assuntos
Idoxuridina , Paládio , Catálise , Nucleosídeos , Oligonucleotídeos
4.
Mol Divers ; 26(5): 2631-2645, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35001230

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by novel severe acute respiratory syndrome coronavirus (SARS-CoV-2). Its main protease, 3C-like protease (3CLpro), is an attractive target for drug design, due to its importance in virus replication. The analysis of the radial distribution function of 159 3CLpro structures reveals a high similarity index. A study of the catalytic pocket of 3CLpro with bound inhibitors reveals that the influence of the inhibitors is local, perturbing dominantly only residues in the active pocket. A machine learning based model with high predictive ability against SARS-CoV-2 3CLpro is designed and validated. The model is used to perform a drug-repurposing study, with the main aim to identify existing drugs with the highest 3CLpro inhibition power. Among antiviral agents, lopinavir, idoxuridine, paritaprevir, and favipiravir showed the highest inhibition potential. Enzyme - ligand interactions as a key ingredient for successful drug design.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Antivirais/química , Antivirais/farmacologia , Domínio Catalítico , Proteases 3C de Coronavírus , Reposicionamento de Medicamentos , Humanos , Idoxuridina , Ligantes , Lopinavir , Simulação de Acoplamento Molecular , Peptídeo Hidrolases/metabolismo , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia
5.
J Vis Exp ; (176)2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34747407

RESUMO

The regulation of cell cycle phase is an important aspect of cellular proliferation and homeostasis. Disruption of the regulatory mechanisms governing the cell cycle is a feature of a number of diseases, including cancer. Study of the cell cycle necessitates the ability to define the number of cells in each portion of cell cycle progression as well as to clearly delineate between each cell cycle phase. The advent of mass cytometry (MCM) provides tremendous potential for high throughput single cell analysis through direct measurements of elemental isotopes, and the development of a method to measure the cell cycle state by MCM further extends the utility of MCM. Here we describe a method that directly measures 5-iodo-2'-deoxyuridine (IdU), similar to 5-bromo-2´-deoxyuridine (BrdU), in an MCM system. Use of this IdU-based MCM provides several advantages. First, IdU is rapidly incorporated into DNA during its synthesis, allowing reliable measurement of cells in the S-phase with incubations as short as 10-15 minutes. Second, IdU is measured without the need for secondary antibodies or the need for DNA degradation. Third, IdU staining can be easily combined with measurement of cyclin B1, phosphorylated retinoblastoma protein (pRb), and phosphorylated histone H3 (pHH3), which collectively provides clear delineation of the five cell cycle phases. Combination of these cell cycle markers with the high number of parameters possible with MCM allow combination with numerous other metrics.


Assuntos
Idoxuridina , Bromodesoxiuridina/metabolismo , Ciclo Celular , Citometria de Fluxo/métodos , Idoxuridina/metabolismo , Coloração e Rotulagem
6.
Science ; 373(6557)2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34301855

RESUMO

Stochastic fluctuations in gene expression ("noise") are often considered detrimental, but fluctuations can also be exploited for benefit (e.g., dither). We show here that DNA base excision repair amplifies transcriptional noise to facilitate cellular reprogramming. Specifically, the DNA repair protein Apex1, which recognizes both naturally occurring and unnatural base modifications, amplifies expression noise while homeostatically maintaining mean expression levels. This amplified expression noise originates from shorter-duration, higher-intensity transcriptional bursts generated by Apex1-mediated DNA supercoiling. The remodeling of DNA topology first impedes and then accelerates transcription to maintain mean levels. This mechanism, which we refer to as "discordant transcription through repair" ("DiThR," which is pronounced "dither"), potentiates cellular reprogramming and differentiation. Our study reveals a potential functional role for transcriptional fluctuations mediated by DNA base modifications in embryonic development and disease.


Assuntos
Diferenciação Celular , Reprogramação Celular , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA/química , Expressão Gênica , Transcrição Gênica , Animais , Células Cultivadas , Simulação por Computador , DNA/genética , DNA/metabolismo , Células-Tronco Embrionárias , Expressão Gênica/efeitos dos fármacos , Idoxuridina/metabolismo , Idoxuridina/farmacologia , Camundongos , Modelos Genéticos , Proteína Homeobox Nanog/genética , Conformação de Ácido Nucleico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Célula Única , Processos Estocásticos , Timidina Quinase/genética , Timidina Quinase/metabolismo , Transcrição Gênica/efeitos dos fármacos
7.
J Photochem Photobiol B ; 205: 111827, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32120183

RESUMO

5-iodo-2-deoxyuridine (IUdR) has been demonstrated to induce an appreciable radiosensitizing effect on glioblastoma patients, but due to the short circulation half-life times and failure to pass through the blood-brain barrier (BBB), its clinical use is limited. Accordingly, in this study, we used magnetic graphene oxide (NGO/SPIONs) nanoparticles coated with PLGA polymer as a dynamic nanocarrier for IUdR and, evaluated its sensitizing enhancement ratio in combination with a single dose X-ray at clinically megavoltage energies for treatment of C6 glioma rats. Nanoparticles were characterized using Zetasizer and TEM microscopy, and in vitro biocompatibility of nanoparticles was assessed with MTT assay. IUdR/MNPs were intravenously administered under a magnetic field (1.3 T) on day 13 after the implantation of C6 cells. After a day following the injection, rats exposed with radiation (8 Gy). ICP-OES analysis data indicated an effective magnetic targeting, leading to remarkably improved penetration through the BBB. In vivo release analysis with HPLC indicated sustained release of IUdR and, prolonged the lifespan in plasma (P < .01). In addition, our findings revealed a synergistic effect for IUdR/MNPs coupled with radiation, which significantly inhibited the tumor expansion (>100%), prolonged the survival time (>100%) and suppressed the anti-apoptotic response of glioma rats by increasing Bax/Bcl-2 ratio (2.13-fold) in compared with the radiation-only. In conclusion, besides high accumulation in targeted tumor sites, the newly developed IUdR/MNPs, also exhibited the ability of IUdR/MNPs to significantly enhance radiosensitizing effect, improve therapeutic efficacy and increase toxicity for glioma-bearing rats.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Grafite/administração & dosagem , Idoxuridina/administração & dosagem , Nanopartículas/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/administração & dosagem , Radiossensibilizantes/administração & dosagem , Animais , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Glioma/metabolismo , Glioma/patologia , Grafite/química , Grafite/farmacocinética , Concentração de Íons de Hidrogênio , Idoxuridina/farmacocinética , Fenômenos Magnéticos , Masculino , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacocinética , Coelhos , Radiossensibilizantes/farmacocinética , Ratos Wistar , Carga Tumoral/efeitos dos fármacos
9.
Clin Cancer Res ; 25(20): 6035-6043, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31337643

RESUMO

PURPOSE: Iododeoxyuridine (IUdR) is a potent radiosensitizer; however, its clinical utility is limited by dose-limiting systemic toxicities and the need for prolonged continuous infusion. 5-Iodo-2-pyrimidinone-2'-deoxyribose (IPdR) is an oral prodrug of IUdR that, compared with IUdR, is easier to administer and less toxic, with a more favorable therapeutic index in preclinical studies. Here, we report the clinical and pharmacologic results of a first-in-human phase I dose escalation study of IPdR + concurrent radiation therapy (RT) in patients with advanced metastatic gastrointestinal (GI) cancers. PATIENTS AND METHODS: Adult patients with metastatic GI cancers referred for palliative RT to the chest, abdomen, or pelvis were eligible for study. Patients received IPdR orally once every day × 28 days beginning 7 days before the initiation of RT (37.5 Gy in 2.5 Gy × 15 fractions). A 2-part dose escalation scheme was used, pharmacokinetic studies were performed at multiple time points, and all patients were assessed for toxicity and response to Day 56. RESULTS: Nineteen patients were entered on study. Dose-limiting toxicity was encountered at 1,800 mg every day, and the recommended phase II dose is 1,200 mg every day. Pharmacokinetic analyses demonstrated achievable and sustainable levels of plasma IUdR ≥1 µmol/L (levels previously shown to mediate radiosensitization). Two complete, 3 partial, and 9 stable responses were achieved in target lesions. CONCLUSIONS: Administration of IPdR orally every day × 28 days with RT is feasible and tolerable at doses that produce plasma IUdR levels ≥1 µmol/L. These results support the investigation of IPdR + RT in phase II studies.


Assuntos
Quimiorradioterapia/métodos , Neoplasias Gastrointestinais/terapia , Idoxuridina/farmacocinética , Nucleosídeos de Pirimidina/administração & dosagem , Radiossensibilizantes/administração & dosagem , Administração Oral , Adulto , Idoso , Idoso de 80 Anos ou mais , Fracionamento da Dose de Radiação , Estudos de Viabilidade , Feminino , Neoplasias Gastrointestinais/patologia , Humanos , Idoxuridina/administração & dosagem , Idoxuridina/toxicidade , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Pró-Fármacos/administração & dosagem , Pró-Fármacos/farmacocinética , Pró-Fármacos/toxicidade , Nucleosídeos de Pirimidina/farmacocinética , Nucleosídeos de Pirimidina/toxicidade , Radiossensibilizantes/farmacocinética , Radiossensibilizantes/toxicidade , Resultado do Tratamento
10.
Cytometry A ; 95(10): 1075-1084, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31150166

RESUMO

We present a new method to directly quantify the dynamics of differentiation of multiple cellular subsets in unperturbed mice. We combine a pulse-chase protocol of 5-iodo-2'-deoxyuridine (IdU) injections with subsequent analysis by mass cytometry (CyTOF) and mathematical modeling of the IdU dynamics. Measurements by CyTOF allow for a wide range of cells to be analyzed at once, due to the availability of a large staining panel without the complication of fluorescence spillover. These are also compatible with direct detection of integrated iodine signal, with minimal impact on immunophenotyping based on the surface markers. Mathematical modeling beyond a binary classification of surface marker abundance allows for a continuum of cellular states as the cells transition from one state to another. Thus, we present a complete and robust method for directly quantifying differentiation at the systemic level, allowing for system-wide comparisons between different mouse strains and/or experimental conditions. Published 2019. This article is a U.S. Government work and is in the public domain in the USA.


Assuntos
Citometria de Fluxo/métodos , Hematopoese , Idoxuridina/metabolismo , Modelos Teóricos , Animais , Linfócitos B/citologia , Diferenciação Celular , Feminino , Camundongos Endogâmicos C57BL , Neutrófilos/citologia , Fenótipo , Fatores de Tempo
11.
Methods Mol Biol ; 1999: 307-318, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31127587

RESUMO

Understanding the molecular dynamics of DNA replication in vivo has been a formidable challenge requiring the development of advanced technologies. Over the past 50 years or so, studies involving DNA autoradiography in bacterial cells have led to sophisticated DNA tract analyses in human cells to characterize replication dynamics at the single-molecule level. Our own lab has used DNA fiber analysis to characterize replication in helicase-deficient human cells. This work led us to propose a model in which the human DNA helicase RECQ1 acts as a governor of the single-stranded DNA binding protein RPA and regulates its bioavailability for DNA synthesis. We have also used the DNA fiber approach to investigate the interactive role of DDX11 helicase with a replication fork protection protein (Timeless) in human cells when they are under pharmacologically induced stress. In this methods chapter, we present a step-by-step protocol for the single-molecule DNA fiber assay. We describe experimental designs to study replication stress and staining patterns from pulse-chase labeling experiments to address the dynamics of replication forks in stressed cells.


Assuntos
Dano ao DNA/genética , Replicação do DNA/genética , Imagem Individual de Molécula/métodos , Proteínas de Ciclo Celular/metabolismo , RNA Helicases DEAD-box/metabolismo , Dano ao DNA/efeitos dos fármacos , DNA Helicases/metabolismo , Replicação do DNA/efeitos dos fármacos , DNA de Cadeia Simples/metabolismo , Desoxiuridina/análogos & derivados , Desoxiuridina/toxicidade , Células HeLa , Humanos , Idoxuridina/análogos & derivados , Idoxuridina/toxicidade , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , RecQ Helicases/metabolismo , Proteína de Replicação A/metabolismo
12.
Methods Mol Biol ; 1999: 319-325, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31127588

RESUMO

The ability to analyze individual DNA fibers undergoing active DNA synthesis has emerged as a powerful technique in the field of DNA replication. Much of the initial analysis has focused on replication throughout the genome. However, more recent advancements in this technique have allowed for the visualization of replication patterns at distinct loci or regions within the genome. This type of locus-specific resolution will greatly enhance our understanding of the dynamics of DNA replication in regions that provide a challenge to the replication machinery. Here, we describe a protocol that will allow for the visualization of DNA replication through one of the most structurally complex regions in the human genome, the telomeric DNA.


Assuntos
Replicação do DNA , DNA/genética , Hibridização in Situ Fluorescente/métodos , Imagem Molecular/métodos , Telômero/metabolismo , Linhagem Celular , DNA/química , Desoxiuridina/análogos & derivados , Desoxiuridina/química , Técnica Direta de Fluorescência para Anticorpo/métodos , Loci Gênicos , Humanos , Idoxuridina/química , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Imagem Molecular/instrumentação , Sondas Moleculares/química , Coloração e Rotulagem/métodos
13.
Methods Mol Biol ; 1989: 193-215, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31077107

RESUMO

The regulated proliferation of cells is a critical factor in tumor progression, antineoplastic therapies, immune system regulation, and the cellular developmental of multicellular organisms. While measurement of cell cycle state by fluorescent flow cytometry is well established, mass cytometry allows the cell cycle to be measured along with large numbers of other antigens enabling characterization of the complex interactions between the cell cycle and wide variety of cellular processes. This method describes the use of mass cytometry for the analysis of cell cycle state for cells from three different sources: in vitro cultured cell lines, ex vivo human blood or bone marrow, and in vivo labeling of murine tissues. The method utilizes incorporation of 5-Iodo-2'-deoxyuridine (IdU), combined with measurement of phosphorylated retinoblastoma protein (pRb), Cyclin B1, and phosphorylated Histone H3 (pHH3). These measurements can be integrated into a gating strategy that enables clear separation of all five phases of the cell cycle.


Assuntos
Ciclo Celular , Ciclina B1/análise , Citometria de Fluxo/métodos , Histonas/análise , Espectrometria de Massas/métodos , Proteína do Retinoblastoma/análise , Coloração e Rotulagem/métodos , Animais , Células da Medula Óssea/metabolismo , Humanos , Idoxuridina/análogos & derivados , Idoxuridina/metabolismo , Camundongos , Fosforilação
14.
Sci Rep ; 9(1): 5447, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30931986

RESUMO

Heterotopic ossification (HO) is a pathological condition characterized by the deposition of mineralized tissue in ectopic locations such as the skeletal muscle. The precise cellular origin and molecular mechanisms underlying HO are still debated. In our study we focus on the differentiation of mesoangioblasts (MABs), a population of multipotent skeletal muscle precursors. High-content screening for small molecules that perturb MAB differentiation decisions identified Idoxuridine (IdU), an antiviral and radiotherapy adjuvant, as a molecule that promotes MAB osteogenic differentiation while inhibiting myogenesis. IdU-dependent osteogenesis does not rely on the canonical BMP-2/SMADs osteogenic pathway. At pro-osteogenic conditions IdU induces a mild DNA Damage Response (DDR) that activates ATM and p38 eventually promoting the phosphorylation of the osteogenesis master regulator RUNX2. By interfering with this pathway IdU-induced osteogenesis is severely impaired. Overall, our study suggests that induction of the DDR promotes osteogenesis in muscle resident MABs thereby offering a new mechanism that may be involved in the ectopic deposition of mineralized tissue in the muscle.


Assuntos
Diferenciação Celular , Dano ao DNA , Células-Tronco Multipotentes/patologia , Músculo Esquelético/patologia , Osteogênese , Animais , Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular/efeitos dos fármacos , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Idoxuridina/farmacologia , Células-Tronco Multipotentes/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Ossificação Heterotópica , Proteínas Smad/metabolismo
15.
Chemistry ; 25(7): 1773-1780, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30398293

RESUMO

Halogenated nucleosides, such as 5-iodo-2'-deoxyuridine and 5-iodo-2'-deoxycytidine, are incorporated into the DNA of replicating cells to facilitate DNA single-strand breaks and intra- or interstrand crosslinks upon UV irradiation. In this work, it is shown that the naphthyl-based organoselenium compounds can mediate the dehalogenation of halogenated pyrimidine-based nucleosides, such as 5-X-2'-deoxyuridine and 5-X-2'-deoxycytidine (X=Br or I). The rate of deiodination was found to be significantly higher than that of the debromination for both nucleosides. Furthermore, the deiodination of iodo-cytidines was found to be faster than that of iodo-uridines. The initial rates of the deiodinations of 5-iodocytosine and 5-iodouracil indicated that the nature of the sugar moiety influences the kinetics of the deiodination. For both the nucleobases and nucleosides, the deiodination and debromination reactions follow a halogen-bond-mediated and addition/elimination pathway, respectively.


Assuntos
Nucleosídeos/química , Compostos Organosselênicos/química , Cristalografia por Raios X , Halogenação , Idoxuridina/análogos & derivados , Idoxuridina/química , Espectroscopia de Ressonância Magnética , Conformação Molecular
16.
Int J Radiat Biol ; 94(11): 1027-1037, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29985733

RESUMO

PURPOSE: Glioblastoma multiform (GBM) is the most prevalent and aggressive type of primary brain tumor. None of the current conventional treatment methods has improved treatment considerably. Therefore, in this study the effect of magnetic nanoparticles coated with poly (caprolactone)-poly (ethylene glycol) (PCL-PEG) as a 5-iodo 2'deoxyuridine (IUdR) carrier in the presence of hyperthermia and 6 MV (megavoltage) X-ray radiation, were investigated in a spheroid model of U87MG glioblastoma cell line using colony formation assay. MATERIALS AND METHODS: First, the human glioblastoma cell line U87MG was cultured as a spheroid using the liquid overlay technique. Spheroids on day 10 with 100 mm diameters were treated with 1 µM IUdR or nanoparticles as IUdR carriers for one volume doubling time (VDT) of spheroids (67 h) and hyperthermia at 43 °C for 1 h, and then irradiated with 2 Gy of 6 MV X-ray in different groups. Finally, the effect of treatment on colony-forming ability was obtained by colony formation and alkaline assay. RESULTS: Our results revealed that hyperthermia in combination with radiation could significantly reduce the colony number of glioblastoma spheroid cells treated with IUdR or nanoparticles as IUdR carriers. However, the extent of reduction in colony number following treatment with IUdR-loaded nanoparticles in combination with hyperthermia and then X-ray radiation was significantly more than free IUdR. CONCLUSION: According to this study, PCL-PEG-coated magnetic nanoparticles are effective delivery vehicles for IUdR into cells. Moreover, they can act as a radiosensitizer and thermosensitizer in the treatment of the glioblastoma cell line.


Assuntos
Portadores de Fármacos/química , Glioblastoma/patologia , Hipertermia Induzida , Idoxuridina/análogos & derivados , Nanopartículas de Magnetita/química , Poliésteres/química , Polietilenoglicóis/química , Transporte Biológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Terapia Combinada , Portadores de Fármacos/metabolismo , Glioblastoma/radioterapia , Humanos , Idoxuridina/química , Tamanho da Partícula , Esferoides Celulares/patologia , Esferoides Celulares/efeitos da radiação
17.
Chem Commun (Camb) ; 54(57): 8003-8006, 2018 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-29967912

RESUMO

The on-column functionalization of oligodeoxynucleotides via base-free Suzuki cross-coupling reactions is reported herein. These cross-coupling reactions were carried out with various boronic acids and either full-length modified oligonucleotides containing one or more 2'-deoxy-5-iodouridine (5IdU) monomer(s) or on oligonucleotide fragments immediately after incorporation of 5IdU. Five different functionalities were coupled to oligonucleotides containing one or three attachment points.


Assuntos
Oligodesoxirribonucleotídeos/química , Ácidos Borônicos/química , Catálise , Idoxuridina/análogos & derivados , Idoxuridina/química , Paládio/química
18.
J Radiat Res ; 59(4): 411-429, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29800458

RESUMO

Gene expression analysis was carried out in Jurkat cells in order to identify candidate genes showing significant gene expression alterations allowing robust discrimination of the Auger emitter 123I, incorporated into the DNA as 123I-iododeoxyuridine (123IUdR), from α- and γ-radiation. The γ-H2AX foci assay was used to determine equi-effect doses or activity, and gene expression analysis was carried out at similar levels of foci induction. Comparative gene expression analysis was performed employing whole human genome DNA microarrays. Candidate genes had to show significant expression changes and no altered gene regulation or opposite regulation after exposure to the radiation quality to be compared. The gene expression of all candidate genes was validated by quantitative real-time PCR. The functional categorization of significantly deregulated genes revealed that chromatin organization and apoptosis were generally affected. After exposure to 123IUdR, α-particles and γ-rays, at equi-effect doses/activity, 155, 316 and 982 genes were exclusively regulated, respectively. Applying the stringent requirements for candidate genes, four (PPP1R14C, TNFAIP8L1, DNAJC1 and PRTFDC1), one (KLF10) and one (TNFAIP8L1) gene(s) were identified, respectively allowing reliable discrimination between γ- and 123IUdR exposure, γ- and α-radiation, and α- and 123IUdR exposure, respectively. The Auger emitter 123I induced specific gene expression patterns in Jurkat cells when compared with γ- and α-irradiation, suggesting a unique cellular response after 123IUdR exposure. Gene expression analysis might be an effective tool for identifying biomarkers for discriminating different radiation qualities and, furthermore, might help to explain the varying biological effectiveness at the mechanistic level.


Assuntos
Partículas alfa , Biomarcadores/metabolismo , Raios gama , Perfilação da Expressão Gênica , Idoxuridina/farmacologia , DNA/metabolismo , Dano ao DNA , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Regulação para Baixo/efeitos da radiação , Estudos de Associação Genética , Histonas/metabolismo , Humanos , Células Jurkat , Transdução de Sinais/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Regulação para Cima/efeitos da radiação
19.
Nucleic Acids Res ; 46(11): e65, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29546376

RESUMO

Pd-catalyzed C-C bond formation, an important vertebra in the spine of synthetic chemistry, is emerging as a valuable chemoselective transformation for post-synthetic functionalization of biomacromolecules. While methods are available for labeling protein and DNA, development of an analogous procedure to label RNA by cross-coupling reactions remains a major challenge. Herein, we describe a new Pd-mediated RNA oligonucleotide (ON) labeling method that involves post-transcriptional functionalization of iodouridine-labeled RNA transcripts by using Suzuki-Miyaura cross-coupling reaction. 5-Iodouridine triphosphate (IUTP) is efficiently incorporated into RNA ONs at one or more sites by T7 RNA polymerase. Further, using a catalytic system made of Pd(OAc)2 and 2-aminopyrimidine-4,6-diol (ADHP) or dimethylamino-substituted ADHP (DMADHP), we established a modular method to functionalize iodouridine-labeled RNA ONs in the presence of various boronic acid and ester substrates under very mild conditions (37°C and pH 8.5). This method is highly chemoselective, and offers direct access to RNA ONs labeled with commonly used fluorescent and affinity tags and new fluorogenic environment-sensitive nucleoside probes in a ligand-controlled stereoselective fashion. Taken together, this simple approach of generating functional RNA ON probes by Suzuki-Miyaura coupling will be a very important addition to the resources and tools available for analyzing RNA motifs.


Assuntos
Oligonucleotídeos/química , Sondas RNA/química , RNA/química , Coloração e Rotulagem/métodos , Ácidos Borônicos/química , Catálise , RNA Polimerases Dirigidas por DNA/metabolismo , Idoxuridina/análogos & derivados , Idoxuridina/química , Estrutura Molecular , Paládio/química , Pirimidinas/química , Proteínas Virais/metabolismo
20.
Photodiagnosis Photodyn Ther ; 21: 91-97, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29155336

RESUMO

Glioma is one of the most common malignant cancers of the central nervous system (CNS). Radiatherapy and chemotherapy may be used to slow the growth of tumors that cannot be removed with surgery. The current study developed a combination therapy tool using Nanographene oxide (NGO) functionalized with poly lactic-co-glycolic acid (PLGA) as a carrier of 5-iodo-2-deoxyuridine (IUdR) for glioma cancer treatment. U87MG cells were treated in different groups with IUdR, PLGA-coated Nanographene oxide (PLGA-NGO), IUdR-loaded PLGA-coated Nanographene oxide (IUdR-PLGA-NGO), 2Gy 6MV X-ray radiation, and near-infrared region (NIR) laser radiation. PLGA-NGO showed excellent biocompatibility, high storage capacity for IUdR and high photothermal conversion efficiency. It was effectively employed to create cell damage in the U87MG cell line in the presence of X-ray (6 MV) and NIR laser. Moreover, IUdR-PLGA-NGO+X-ray+NIR laser significantly reduced the plating efficiency of the cells in comparison with IUdR-PLGA-NGO+X-ray and IUdR-PLGA-NGO+NIR laser. Furthermore, Prussian blue staining showed that IUdR-PLGA-NGO-SPIONs were delivered into glioblastoma cells. The PLGA-NGO loaded with IUdR under NIR and X-ray radiation exhibited the highest cytotoxicity toward U87MG cells when compared with other treatment methods, indicating efficient radio-photothermal targeted therapy.


Assuntos
Portadores de Fármacos/química , Glioma/terapia , Idoxuridina/análogos & derivados , Terapia a Laser/métodos , Nanopartículas/química , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/radioterapia , Grafite/química , Humanos , Idoxuridina/administração & dosagem , Idoxuridina/uso terapêutico , Tamanho da Partícula , Poliésteres/química , Radiação Ionizante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...